ข้อสอบ PAT 1 - กุมภาพันธ์ 2562

ข้อ 38

กำหนดให้ f และ g เป็นฟังก์ชันที่นิยามโดย fx=x2-x+a และ gx=x2+bx สำหรับทุกจำนวนจริง x เมื่อ a และ b เป็นจำนวนเต็ม  ถ้า fgx=gfx สำหรับทุกจำนวนจริง x  แล้ว fb+ga เท่ากับเท่าใด

รีวิว - เสียงตอบรับจากผู้เรียน

เฉลยข้อสอบ

 จากโจทย์      fx = x2-x+a                   gx = x2+bx           fgx = gfx  1

 หาค่า fgx จะได้    fgx = fgx= fx2+bx= x2+bx2-x2+bx+a= x4+2bx3+b2x2-x2-bx+a= x4+2bx3+b2-1x2-bx+a

 หาค่า gfx จะได้  gfx = gfx= gx2-x+a= x2-x+a2+bx2-x+a= x4-x3+ax2-x3+x2-ax+ax2-ax+a2    +bx2-bx+ab

= x4-2x3+2ax2+bx2+x2    -2ax-bx+a2+ab= x4-2x3+2a+b+1x2-2a+bx+a2+ab

 จาก 1     fgx = gfx นำมาเทียบสัมประสิทธิ์- ... x3           2b = -2                                  b = -1- ... x2   b2-1 = 2a+b-1                    -12-1 = 2a+-1+1                                  a = 0

- ... x          -b = -2a+b                                   b = 2a+b                                   a = 0- ... x0             a = a2+ab                                   0 = 02+0-1                                   0 = 0 แสดงว่า      a=0 , b=-1

จะได้         fx = x2-x                 gx = x2-xดังนั้น        fb+ga = f-1+g0                 = -12--1+02-0                = 1+1 = 2

ปิด
ทดลองเรียน