สูตร sinA+B=sin A cos B +cos A sin B 2sin A sin B=cosA-B-cosA+B จากโจทย์ 2sin260°(tan5°+tan85°) - 12sin70° =2322sin 5°cos 5°+sin 85°cos 85°-12sin 70° =234sin 5°cos 85°+sin 85°cos 5°cos 5°cos 85°-12sin 70° =32sin 5°+ 85°cos 5°sin 5°-12sin 70° =3sin 90°2sin 5°cos 5°-12sin 70° ; sin90°=1 =3sin 10°-12sin 70° =3-12sin 70°sin 10°sin 10° =3-62sin 70°sin 10°sin 10° =3-6cos70°-10°-cos70°+10°sin 10° =3-6cos60°-cos80°sin 10° =3-6cos60°+6cos80°sin 10° =3-612+6sin 10°sin 10° =6sin 10°sin 10° =6