จากโจทย์ 1+1n2+1(n+1)2 =n2(n+1)2+(n+1)2+n2n2(n+1)2 =n2(n+1)2+2n2+2n+1n(n+1)2 =n(n+1)2+2nn+1+1n(n+1)2 =n(n+1)+12n(n+1)2 =n(n+1)+1n(n+1) =1+1n(n+1) =1+1n-1n+1จะได้ 1+1n2+1(n+1)2=1+1n-1n+1 หาค่าของ 1+112+122+1+122+132+...+1+1n2+1(n+1)2=1+11-12+1+12-13+1+13-14+...+1+1n+1n+1=1+1+1+...+1+11-12+12-13+13-14+...+1n+1n+1=n+1-1n+1 ดังนั้น limn→∞1n1+112+122+1+122+132+...+1+1n2+1(n+1)2 =limn→∞1n(n+1-1n+1)=limn→∞1n(n+1)=1